Sorting Problem

input: sequence of N numbers $\langle a_1, a_2, ..., a_N \rangle$

output: permutation $\langle a'_1, a'_2, ..., a'_N, \leq \rangle$ of the input

The input sequence is usually an array of N elements

Internal or External Sort?
- If the input fits into memory: **internal sort**
- Sorting sets from tape or disk: **external sorting**
- Internal Sorts access to any records
- External Sorts only access records by blocks

we focus on internal sorts

Sorting and Searching

Bruno MARTIN,
University of Nice - Sophia Antipolis
mailto: Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/mathmods.html

Some Ideas about Time Complexity of Sorting

Simple algorithms
- like Bubble Sort, Insertion Sort, Selection Sort, ...
- usual **time complexity**: $O(N^2)$
- useful only for sorting **shorts lists** of records (< 500)

Famous algorithms

- **QuickSort**
 - **time complexity**: $O(N \log N)$ in the **average case**
 - **time complexity**: $O(N^2)$ in the **worst** and **best** case

Sorting Time Complexity

Main **performance parameter**: **time complexity**

Different criteria are used to evaluate the **time complexity** of an internal sorting algorithm:
- The **number of steps** required
- The **number of comparisons** between keys. Comparisons can be **expensive** when keys are **long character strings**
- The **number** of time a record is **moved**. Only keys are compared, but entire records are moved
We keep our focus on algorithms and think of them as sorting arrays of N records in ascending order of their key (\prec).
The algorithm of array sorting uses key comparisons (\prec) and record movements (swap).
The procedure $\text{swap!}(i,j)$ is an exchange operation: $a[i] \leftrightarrow a[j]$.

```ruby
class Array
  def swap!(a, b)
    self[a], self[b] = self[b], self[a]
    self
  end
end
```

$[1,2,3,4].\text{swap!}(2,3) \# = [1,2,4,3]$

Bubble Sort

Description: It keeps passing through the array $[a_0, \ldots, a_{N-1}]$, exchanging each pair of adjacent elements (a_{j-1}, a_j) which are out of order ($a_{j-1} \succ a_j$).

Why does it work?

- During the *first pass*, the *largest element* is exchanged with each of the elements to its right, and gets into position a_{N-1}.
- After the *second pass* the *second largest* gets into position a_{N-2}, ...
- After step k, the sub-array $[a_{N-k}, \ldots, a_{N-1}]$ is ordered, we need to continue on the interval $[0, N-k-1]$.
- When no more exchanges are required: the array is sorted.

Bubble Sort Average Time Complexity in Number of Comparisons

The average number of comparisons is $N(N-1)/2$.

We count the number of comparisons needed by the algorithm:

- At the first step, we need $N-1$ comparisons to put the largest element at position $N-1$.
- At the second step we only need $N-2$ comparisons: we avoid comparing elements with the last one.
- Summing up: $(N-1) + (N-2) + \ldots + 1 = N(N-1)/2$.
Sorting
Searching

Bubble Sort Time Complexity in Best and Worst Case

We count the number of comparisons needed by the algorithm:

Best Case: Bubble Sort on an already sorted array:
- It does like for the average case \(N(N - 1)/2\) comparisons.
- During the iterations on the array: 0 exchange.

Worst Case: array already sorted in reverse order:
- It does like for the average case \(N(N - 1)/2\) comparisons.
- It does a exchange each time it does a comparison.
\(N(N - 1)/2\) exchanges.

Bruno MARTIN, University of Nice - Sophia Antipolis
mailto: Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/mathmods.html

Selection Sort

Find the smallest element in the array and exchange it with the element in the first position, then find the second smallest element and exchange it with the element in the second position, continue until the entire array is sorted.

Why does it works?
- After the \(i^{th}\) step, the array between 0, ..., \(i - 1\) is ordered.
- You are sure that the next “minimum” \(a_{[\text{min}]}\) will be larger than \(a_0, ..., a_{[i - 1]}\).

Notice: A brute-force approach but, since each item is moved at most once, Selection Sort is a method of choice when exchanging record is expensive (large records with small keys).

Ruby implementation

```ruby
def selsort!
  return self if self.size <= 1 # already sorted
  for i in 0..self.length-2 # while there are elements to sort
    min = i # variable for the min
    for j in i+1..self.length-1 # check every item in the array
      if self[j] < self[min] # is it smaller?
        self.swap!(i, min) if i != min # exchange leftmost and min
      end
    end
  end
end
```

Bruno MARTIN, University of Nice - Sophia Antipolis
mailto: Bruno.Martin@unice.fr
http://deptinfo.unice.fr/~bmartin/mathmods.html

Bubble Sort Average Number of Exchanges

The Average number of exchanges is \(N(N - 1)/4\) in a list \(L\) of \(N\) items:
- Consider \(L\) randomly ordered and \(\overline{L}\) its exact reverse.
- Apply a bubble sort separately to both \(L\) and \(\overline{L}\).
- \(i\) and \(j\) are out of order in exactly one of \(L\) and \(\overline{L}\), there is a swap in either \(L\) or \(\overline{L}\).
- The property applies to any two items in either \(L\) or \(\overline{L}\) for every pair of items.
- Since there are \(N(N - 1)/2\) distinct pairs, sorting both \(L\) and \(\overline{L}\) requires \(N(N - 1)/2\) exchanges.
- On average, \(N(N - 1)/4\) swaps are required for a list of size \(N\).
Selection Sort Average Time Complexity

The average number of **comparisons** is $N(N - 1)/2$ and of **exchanges** is $(N - 1)/2$

- **The first step** requires $N - 1$ comparisons to find the min
- **The second step** requires $N - 2$ comparisons to find the second min
- **The last step** requires 1 comparison to find the min
- We do $(N - 1) + (N - 2) + ... + 1 = N(N - 1)/2$ comparisons
- We need **less than** $N - 1$ exchanges. One for each element except when you try to exchange one element with itself

Selection Sort Time Complexity in Best and Worst Case

Best Case: Selection Sort on an already sorted array:

- It still iterates on the array to find the minimum and it does $N(N - 1)/2$ comparisons
- doesn’t exchange during the iterations: 0 exchange

Worst Case: Selection Sort on an array sorted in reverse order:

- It does like for the best and average case $N(N - 1)/2$ comparisons
- It does its maximum number of exchanges $N - 1$ exchanges

Insertion Sort

You consider the elements one at a time. You insert each in its proper place among those already sorted

Notice:

- After placing the element a_i, the elements $[a_0, ..., a_i]$ are sorted
- To place the element a_{i+1}, you iterate down the sorted array (from a_i to a_0) shifting one place to the right the current element if it is greater than a_{i+1}
- When the current element is smaller than a_{i+1} you have after it a free place to insert a_{i+1}

Insertion Sort Average Time Complexity

The Average number of Comparisons is $(N(N + 3)/4) - 1$

- The number of comparisons to insert an element in the sorted set of its predecessors is equal to the number of exchanges it causes plus one because we also compare it with the first element smaller than itself
- For the permutation α corresponding to the array to sort, the total number of comparisons is the total number of exchanges plus $N - 1$
- $N(N - 1)/4$=average number of exchanges in a permutation1
- The average number is $N - 1 + N(N - 1)/4 = (N(N + 3)/4) - 1$

Insertion Sort Time Complexity in Best and Worst Case

Best Case: Insertion Sort on an already sorted array:
- does $N - 1$ iterations on the array, at each iteration it does 1 comparison
- It doesn’t exchange during the $N - 1$ iterations on the array: 0 exchange

Worst Case: Insertion sort on an array sorted in the reverse order:
- At step i a_i is the minimum of the sorted part of the array
- algo compares a_i times (with $a_{i-1}, ..., a_0$) $N(N - 1)/2$ comparisons
- It does its maximum number of shifts $N(N - 1)/2$ "exchanges"

Consider the operation of sorting an “almost sorted” array:
- Insertion Sort becomes useful because its time complexity depends quite heavily on the order present in the array
- For each element you count the number of elements to its left which are greater
- This is the distance the elements have to move when inserted into the array
- In an almost sorted array the distance is small
- When records are large in comparison to the keys, **Selection Sort** is linear in exchanges

Comparisons between Elementary Sorts in the Best Case

Consider the operation of sorting an already sorted array:
- Bubble Sort can be linear: it iterates one time on the array using $N - 1$ comparisons and 0 exchange and stops
- Insertion sort is linear: each element is immediately determined to be in its proper place in the array
- Selection Sort is quadratic: it keeps searching the minimum element

Quick Sort

Invented by C.A.R. Hoare in 1960, easy to implement, a good general purpose internal sort

It is a **divide-and-conquer** algorithm:
- take at random an element in the array, say v
- divide the array into two partitions:
 - One contains elements smaller than v
 - The other contains elements greater than v
- put the elements $\leq v$ at the beginning of the array (say, index between 1 and $m - 1$) and the elements $\geq v$ at the end of the array (index between $m + 1$ and N) then you have found the place to put v between the two partitions (at position m)
- recursively call QuickSort on $([a_0, ..., a_{m-1}]$ and $[a_{m+1}, ..., a_{N-1}]$)
- stop when the partition is reduced to a single element
Implementation with Ruby features

It uses the ideas of the quicksort.

```ruby
def qsort
  return self if empty?
  select { |x| x < first }.qsort
  + select { |x| x == first }
  + select { |x| x > first }.qsort
end
```

How can we replace the `select` operator from Ruby?

Algorithm of Quick Sort

For example, the random element can be the leftmost or the rightmost element, we choose the rightmost.

“Our” QuickSort runs on an array \([a_{left}, ..., a_{right}]\):

```ruby
def quick!(left, right)
  if left < right
    m = self.partition(left, right)
    self.quick!(left, m-1)
    self.quick!(m+1, right)
  end
end
```

Algorithm of the Partition of the Array

Scans (index \(i\)) from the left until you find an elt \(\geq v\) \((a[i] \geq v)\)
Scans (index \(j\)) from the right until you find an elt \(\leq v\) \((a[j] \leq v)\)
Both elements are obviously out of place: swap \(a[i]\) and \(a[j]\)
Continue until the scan pointers cross \((j \leq i)\)
Exchange \(v\) \((a[right])\) with the element \(a[i]\)

```ruby
until j<=i do
  i+=1 until self[i] >= v # scans for i: self[i] >= v
  j-=1 until self[j] <= v # scans for j: self[j] <= v
  if i=j
    self.swap!(i, j) # exchange both elements
    i+=1; j-=1 # modify indexes: clean recursion
  end
end
```

The big picture

```ruby
def qsort!
  def lqsort(left, right) # sort from left to right
    if left < right
      v, i, j = self[right], left, right
      until j <= i do
        i+=1 until self[i] >= v # scans for i: self[i] >= v
        j-=1 until self[j] <= v # scans for j: self[j] <= v
        if i=j
          self.swap!(i, j) # exchange both elements
          i+=1; j-=1 # modify indexes: clean recursion
        end
        self.lqsort(left, j) # sort left part
        self.lqsort(i, right) # sort right part
      end
      self.lqsort(0, self.length-1)
    end
  end
```
Quick Sort

We test that neither i nor j cross the array bounds left and right. Because \(v = \text{self}[\text{right}] \) you are sure that the loop on i stops at least when \(i = \text{right} \). But if \(v = \text{self}[\text{right}] \) happens to be the smallest element between left and right, the loop on j might pass the left end of the array. To avoid the tests, you can choose another solution:

- Take three elements in the array: the leftmost, the rightmost, and the middle one
- Sort them
- Put the smallest at the leftmost position, the greatest at the rightmost position, and the middle one as v

Quick Sort on Average-Case Partitioning

Average performance of Quick Sort is about \(1.38N \log N \): very efficient algorithm with a very small constant. Quick Sort is a divide-and-conquer algorithm which splits the problem in two recursive calls and “combines” the results. Divide-and-conquer is a good method every time you can split your problem in smaller pieces and combine the results to obtain the global solution. But divide-and-conquer leads to an efficient algorithm only when the problem is divided without overlap.

\[C_N : \text{average number of comparisons for sorting } N \text{ elements:} \]
\[C_N = N + 1 + \frac{1}{N} \sum_{k=1}^{N} (C_{k-1} + C_{N-k}) \]
- \(N + 1 \) comparisons during the two inner whiles \(N - 1 + 2 \) (2 when \(i \) and \(j \) cross)
- Plus the average number of comparisons on the two sub-arrays \((C_0 + C_{N-1}) + (C_1 + C_{N-2}) + ... + (C_{N-1} + C_0))/N\)

By symmetry: \(C_N = N + 1 + \frac{2}{N} \sum_{k=1}^{N} C_{k-1} \)

Subtract \(NC_N - (N - 1)C_{N-1} \)

\(NC_N = (N + 1)C_{N-1} + 2N \)

Divide both side by \(N(\log N) \) to obtain the recurrence:

\[\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1} = \frac{C_{N-2}}{N-1} + \frac{2}{N} = ... = \frac{C_2}{3} + 2 \sum_{k=4}^{N+1} \frac{1}{k} \]

Approximation: \(\frac{C_N}{N+1} \approx 2 \sum_{k=1}^{N} \frac{1}{k} \approx 2 \int_1^N \frac{1}{x} \, dx \approx 2 \ln N \)

\(C_N \approx 2N \ln N \approx 2N \ln(2) \log(N) \approx 1.38N \log N \)

Quick Sort on worst-case partitioning

Quick Sort is very inefficient on already sorted sets: \(O(N^2) \):
- Suppose \(a[0], ..., a[N - 1] \) sorted without equal elements
- At the first call \(v = a[N - 1] \):
 - The while on \(i \) continues until \(i = N - 1 \) and stops because \(a[N - 1] = v \) : the sort does \(N \) comparisons
 - The while on \(j \) stops on \(j = N - 2 \) because \(a[N - 2] < v \) : 1 comparison
 - We exchange \(a[N - 1] \) with itself : 1 exchange
 - We call QuickSort on \(a[0], ..., a[N - 2] \) and on \(a[N - 2], ..., a[N - 1] \) which immediately stops
- So \((N + 1) + N + (N - 1) + ... + 2 = N(N + 3)/2 \)
- QuickSort is in \(O(N^2) \) on sorted sets.
Intuition for the performance of quick sort

Quicksort running time depends on whether the partitioning is balanced.

The worst-case partitioning occurs when the partitioning produces one region with 1 element and one with \(N - 1 \) elements: \(O(N^2) \)

The best-case partitioning occurs when the partitioning produces two regions with \(N/2 \) elements (\(C_N = N + 2C_{N/2} \)): \(O(N \log N) \)

\[
\begin{array}{c|ccc}
\text{worst-case} & \text{best-case} \\
\hline
N/2 & N/2 & N/2 & N/2 \\
\end{array}
\]

The decision tree to sort \(N \) elements has \(N! \) leaves (all possible permutations).
A binary tree with \(N! \) leaves has a height order of \(\log(N!) \) which is approximately \(N \log N \) (Stirling).

\(N \log N \) is a lower bound for sorting.
Introduction to Searching

Searching: fundamental operation in many tasks: retrieving a particular information among a large amount of stored data.

The stored data can be viewed as a set. Information divided into records with field key used for searching.

Goal of Searching: find the records whose key matches a given searched key.

Dictionaries and symbol tables are two examples of data structures needed for searching.

Operations of Searching

The time complexity often depends on the structure given to the set of records (e.g., lists, sets, arrays, trees, ...).

So, when programming a searching algorithm on a structure, one often needs to provide operations like Insertion, Deletion and sometimes Sorting the set of records.

In any case, the time complexity of the searching algorithm might be sensitive to operations like comparison of keys, insertion of one record in the set, shift of records, exchange of records, ...

Sequential Searching in an Array is $O(N)$

Sequential Searching in an array uses:

- $N + 1$ comparisons for an unsuccessful search in the best, average and worst case.
- $(N + 1)/2$ comparisons for a successful search on the average2
 - Suppose that the records have the same probability to be found
 - We do 1 comparison with the first one,
 - ...
 - N to find the last one
 - on the average: $(1 + 2 + ... + N)/N = N(N + 1)/2N$

Sequential Searching in a Sorted List is in $O(N)$

Sequential searching in a sorted list approximately uses $N/2$ for both a successful and an unsuccessful search.

- The (average) complexity of the successful search in sorted lists equals the successful search on array in the average case.
- For unsuccessful:
 - The search can be ended by each of the elements of the list.
 - We do 1 comparison if the searched key is less than the first element,..., $N + 1$ comparison if the key is greater than the last one (the sentinel).
 - $(1 + ... + (N + 1))/N = (N + 1)(N + 2)/2N$
An Elementary Searching Algorithm: the Binary Search

When the set of records gets large and the records are ordered to reduce the searching time, use a \textit{divide-and-conquer} strategy:

- Divide the set into two parts
- Determine in which part the key might belong to
- Repeat the search on this part of the set

Application to numerical analysis

For finding an approximate of the zeroes of a cont. function by the

\textbf{Theorem} (Intermediate value theorem)

\textit{If the function } \(f(x) = y \) \textit{ is continuous on } \([a, b]\) \textit{ and } \(u \) \textit{ is a number st } \(f(a) < u < f(b) \), then there is a } \(c \) \textit{ \(\in \) } \([a, b]\) \textit{ s.t. } \(f(c) = u \).

if one can evaluate the sign of \(f((a + b)/2) \);
Let \(f \) be strictly increasing on \([a, b]\) with \(f(a) < 0 < f(b) \)
The binary search allows to find \(y \) \(\text{ st } f(y) = 0 \):
- start with the pair \((a, b)\)
- evaluate \(v = f((a + b)/2) \)
- if \(v < 0 \) replace \(a \) by \(v \) otherwise replace \(b \) by \(v \)
- iterate on the new pair until the diff. between the values is less than an arbitrary given precision

Performance of Binary Search

Binary Search uses approximately \(\log N \) comparisons for both (un)successful search in \textit{best, average and worst} case

Maximal number of comparisons when the search is \textit{unsuccessful}
Order of magnitude

Searching on the average case:
- A successful sequential search in a set of 10000 elements takes 5000 comparisons
- A successful binary search in the same set takes 14 comparisons

BUT

Inserting an element:
- In an array takes 1 operation
- In a sorted array takes \(N \) operations: to find the place and shift right the other elements

Performance of the Interpolation Search

The interpolation search uses approximately \(\log \log N \) comparisons for both (un)successful search in the array.

But Interpolation search heavily depends on the fact that the keys are well distributed over the interval.

The method requires some computation; for small sets the \(\log N \) of binary search is close to \(\log \log N \).

So interpolation search should be used for large sets in applications where comparisons are particularly expensive or for external methods where access costs are high.

Elementary Searching Algorithm: Interpolation Searching

Dictionary search: if the word begins by \(\text{B} \) you look near the beginning and if the word begins by \(\text{T} \) you turn a lot of pages.

Suppose you search the key \(k \), in the binary search you cut the array in the middle

\[
\text{middle} = \text{left} + \frac{1}{2} (\text{right} - \text{left})
\]

In the interpolation you take the values of the keys into account by replacing \(1/2 \) by a better progression

\[
\text{position} = \text{left} + \frac{k - A[\text{left}].\text{key}}{A[\text{right}].\text{key} - A[\text{left}].\text{key}} (\text{right} - \text{left})
\]