Consensus algorithms

(Hierarchical consensus)

Example 1 (failure free)

- \(P_1 \)
 - \(\text{propose} \ 1 \)
 - \(\text{broadcast} \ (\text{decided} \ 2, \ a) \)
 - \(\text{doesn't deliver, because} \ r > 1 \)

- \(P_2 \)
 - \(\text{propose} \ 2 \)
 - \(\text{broadcast} \ (\text{decided} \ 2, \ a) \)
 - \(\text{propose} \ 2 \)
 - \(\text{broadcast} \ (\text{decided} \ 3, \ a) \)

- \(P_3 \)
 - \(\text{propose} \ 3 \)
 - \(\text{broadcast} \ (\text{decided} \ 3, \ a) \)

Example 2

- \(P_1 \) (\text{decided} \ 1, \ a)

- \(P_2 \)
 - \(\text{propose} \ b \)
 - \(\text{broadcast} \ (\text{decided} \ 2, \ b) \)

- \(P_3 \)
 - \(\text{propose} \ a \)
 - \(\text{propose} \ b \)
 - \(\text{decided} \ 3, \ b \)

Example 3

- \(P_1 \) (\text{decided} \ 1, \ a)

- \(P_2 \)
 - \(\text{propose} \ a \)

- \(P_3 \)
 - \(\text{propose} \ a \)
 - \(\text{broadcast} \ (\text{decided} \ 3, \ a) \)

Proposals:

- \(a \)
- \(b \)
Correctness

1) Validity
 Each process decides on its proposal or adopted one (proposal of another process)

2) Integrity
 - A node decide only on its round (no more than once)

3) Termination
 - Every correct node terminates at least on its round
 If leader is failed:
 - Perfect failure detector ensures progress
 - B2P broadcast ensures delivery of the leader's correctness

4) Agreement
 No to correct nodes decide differently because they eventually adopt the proposal of a correct leader with minimal ID:
 - No older proposals can overtake the adoption and all future proposals and decisions will be equal to this proposal
 \[\Rightarrow \text{correctness} \]

5) It is not uniform (example 2: different decisions, because it crashes)