
Distributed Algorithmics – TD4 Group Comm -

M2 IFI, Ubinet-CSSR

Exercice 1

Set up a nice example to illustrate the RBcast protocol behaviour, compared to Bebcast. You

can assume that the presence of a Pefect Failure Detector allows you to detect accurately

which are the failed processes.

Start from the following situation involving P0, P1…, P4. . P0 starts to broadcast message m,

but fails after having sent the message to P1 and P2. P1 gets informed about the crash of P0

after it already received m; but, while it executes the corresponding code to relay the message

m to all the others (assume it could relay it to P0, P2, P3 but not to P4). So for now, P4 has

not yet a chance to receive m. However, due to the RBcast protocol, P4 will eventually

receive it. You are asked to continue the scenario as you will, including at which moment

each process gets informed by processes crashes, and at which moment the message m gets

received

Exercice 2
We provide you with the following space-time diagram.

You are requested to give the precise ordering of messages m1, m2, m3, m4, m5 delivery on

each of the 3 processes P1, P2, P3.

Explain why the traditional “merge” operation of vector clocks (which keep the maximum of

the 2 compared vectors entries) does not need here to be made, and why only a “+1” operation

on the entry V[j] on each process i is needed when Pi co-deliver the message originating from

Pj.

Are the delivery orderings the same on all the processes ?

Exercice 3
Given the overall specification of the total order (reliable) broadcast protocol of the course,

propose an algorithm based on the use of a sequencer. The sequencer itself could be one of

the group members (i.e. the elected leader of the group). Obviously, this is coming to be an

easy to implement solution, even if it features a central-bottleneck drawback.

Each message broadcast will be added an identifier, and a delivery order number. This last

number is obtained through a request to the sequencer, which delivers numbers in consecutive

increasing manner. Thanks to the obtained number, each process is capable to deliver received

messages in a total ordered way.

Give the precise algorithm for both any process of the group, and the sequencer. Rely onto

broadcasts only to interact from any process to/from the sequencer. Make sure to describe the

algorithm using the module oriented notation.

Explain how the TO property gets fulfilled.

In case faulty processes (except the sequencer) could exist in the system, explain how it is the

case that your complete algorithm ensures reliability (by which mean RB1-RB4 properties are

ensured?)

Exhibit a possible execution of your algorithm in which total order of delivery is ensured, but

not causal ordering for all broadcaster messages

